Adler, A. & Coury, J.E. (1995). The Theory of Numbers: A Text and Source Book of Problems. Jenes and Bertlett Publishers.
Encyclopedia of Mathematics Education. (2020). by
Grinstein, L; and
Lipsey SI. Routledge.
Gödel, K. (1995). Some basic theorems on the foundations of mathematics and their implications. W.S. Feferman in. (red.), Kurt Gödel: Collected Works, Vol. III (s. 304–323). Oxford: Oxford University Press.
----------------. (1947). “What is Cantor's continuum problem?”. The American Mathematical Monthly. 54(9): 515-525.
Klein, F. (2016). “Concerning special properties of integers.” Elementary Mathematics from a Higher Standpoint: Volume I: Arithmetic, Algebra, Analysis. 39-58.
Larman, J. (2002). Understanding Philosophy of Science. Routledge, London, UK.
Raatikainen, P. (2013). “Gödel's Incompleteness Theorems”. Stanford Encyclopedia of Philosophy.
Smith, P. (2013). An introduction to Gödel's Theorems. Cambridge University Press.
Tall, D. & Tirosh, D. (2001). “Infinity-the never-ending struggle”. Educational Studies in Mathematics. 48(2): 129-136.