Akaike, H. (1974). “A new look at the statistical model identification”.
IEEE Transactions on Automatic Control. 19(6): 716-723. doi:
10.1109/TAC.1974.1100705.
Andrejevic, M. (2013). Infoglut: How too Much Information Is Changing the Way We Think and Know. Routledge.
Badiou, A. (2008). Number and Numbers. Cambridge: Polity.
Bellman, R. (1961). Adoptive Control Processes: A Guided Tour. University Press.
Benjamini, Y. & Hochberg, Y. (1995). “Controlling the false discovery rate: a practical and powerful approach to multiple testing”.
Journal of the Royal Statistical Society: Series B (Methodological). 57(1): 289-300.
https://www.jstor.org/stable/2346101.
Berman, J.J. (2013). Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information. Newness.
Beyer, K.; Goldstein, J.; Ramakrishnan, R. & Shaft, U. (1999). “When is ‘nearest neighbor’ meaningful?”. Database Theory—ICDT’99: 7th International Conference Jerusalem, Israel, January 10–12, 1999 Proceedings 7: 217-235. Springer Berlin Heidelberg.
Bowker, G.C. & Star, S.L. (2000). Sorting Things out: Classification and its Consequences. MIT press.
Boyd, D. & Crawford, K. (2012). “Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon”.
Information, Communication & Society. 15(5): 662-679.
https://doi.org/10.1080/1369118X.2012.678878.
Chawla, N.V.; Bowyer, K.W.; Hall, L.O. & Kegelmeyer, W.P. (2002). “SMOTE: Synthetic minority over-sampling technique”.
Journal of Artificial Intelligence Research. 16(2002): 321-357.
https://doi.org/10.1613/jair.953.
Crotty, M.J. (1998). The foundations of social research: Meaning and perspective in the research process. London: Routledge.
Derrida, J. (1996). Archive Fever: A Freudian Impression. Translated by Prenowitz E. University of Chicago Press, Chicago.
Durbin, J. & Koopman, S.J. (2012). Time Series Analysis by State Space Methods. Vol. 38. OUP Oxford.
Durkheim, E. (1982[1895]). Rules of Sociological Method. New York: The Free Press.
Espeland, W.N. & Stevens, L.M. (1998). “Commensuration as a social process”. Annual Review of Sociology. 24(1): 313–343.
Fairclough, N. (2013). Critical Discourse Analysis: The Critical Study of Language. Routledge.
Fan, J. & Li, R. (2006). “Statistical challenges with high dimensionality: Feature selection in knowledge discovery”. arXiv preprint math/0602133. 595-622.
Gayo-Avello, D.; Metaxas, P.T. & Mustafaraj, E. (2011). Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. Proceedings of the International Conference on Weblogs and Social Media (ICWSM).
Geertz, C. (1973). The Interpretation of Cultures: Selected Essays. Basic Books.
Gerlitz, C. & Lury, C. (2014). “Social media and self-evaluating assemblages: On numbers, orderings and values”.
Distinktion: Scandinavian Journal of Social Theory. 15(2): 174-188.
https://doi.org/10.1080/1600910X.2014.920267.
Gillespie, T. (2014). “The relevance of algorithms”. Edited by Gillespie T.; Boczkowski P.J. & Foot, K.A. Media Technologies: Essays on Communication, Materiality, and Society: 167-194. MIT Press.
Greene, W.H. (2003). Econometric Analysis. 8th ed. Pearson Education India.
Hansen, B. (2022). Econometrics. Princeton University Press.
Haraway, D. (2011). “A cyborg manifesto (1985)”. Cultural Theory: An Anthology. Edited by Szeman I.; Kaposy, T.: 454-471. WILEY Blackwell.
Harman, G. (2018). Object-Oriented Ontology: A New Theory Of Everything. Penguin UK.
Hastie, T.; Tibshirani, R.; Friedman, J.H. & Friedman, J.H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2: 1-758. New York: Springer.
Hayles, N.K. (2000). “How we became posthuman: Virtual bodies in cybernetics, literature, and informatics”. Chicago: Chicago University Press.
He, H. & Garcia, E.A. (2009). “Learning from imbalanced data”.
IEEE Transactions on Knowledge and Data Engineering. 21(9): 1263-1284. doi:
10.1109/TKDE.2008.239.
Hellberg, L. (2024). Reduce the Gender Gap in Computer Science Education Using Creative Programming. Master’s Programme, Interactive Media Technology. KTH/Skolan för elektroteknik och datavetenskap (EECS).
Ioffe, S. & Szegedy, C. (2015). “Batch normalization: Accelerating deep network training by reducing internal covariate shift”. International Conference on Machine Learning. Pmlr: 448-456.
Jablonka, E. & Bergsten, C. (2021). “Numbers don’t speak for themselves: Strategies of using numbers in public policy discourse”.
Educational Studies in Mathematics. 108(3): 579-596.
https://doi.org/10.1007/s10649-021-10059-8.
Johnstone, I.M. (2001). “On the distribution of the largest eigenvalue in principal components analysis”.
The Annals of Statistics. 29(2): 295-327. doi:
10.1214/aos/1009210544.
Johnstone, I.M. & Lu, A.Y. (2009). “On consistency and sparsity for principal components analysis in high dimensions”.
Journal of the American Statistical Association. 104(486): 682-693.
https://doi.org/10.1198/jasa.2009.0121.
Kandel, E.R.; Schwartz, J.H. & Jessell, T.M. (2013). Principles of Neural Science. 5th ed. McGraw-Hill Education.
Kant, I. (1781[1908]). Critique of Pure Reason. Modern Classical Philosophers. Cambridge, MA: Houghton Mifflin.
Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures and their Consequences. Sage.
Koller, D. & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT press.
Kuhn, T.S. (1962). The Structure of Scientific Revolutions. University of Chicago Press.
Latour, B. (2007). Reassembling the Social: An Introduction to Actor-Network-Theory. Oup Oxford.
Little, R.J. & Rubin, D.B. (2019). Statistical Analysis with Missing Data. Vol. 793. John Wiley & Sons.
Lohr, S.L. (2021). Sampling: Design and Analysis. Chapman and Hall/CRC.
Manovich, L. (2011). “Trending: The promises and the challenges of big social data”.
Debates in the Digital Humanities. Edited by Gold M.K. The University of Minnesota Press, Minneapolis, MN. Retrieved at 18 September 2023 [Online] from:
http://www.manovich.net/DOCS/Manovich_trending_paper.pdf.
Marchenko, V.A. & Pastur, L.A. (1967). “Distribution of eigenvalues for some sets of random matrices”.
Matematicheskii Sbornik. 114(4): 507-536. doi:
10.1070/SM1967v001n04ABEH001994.
Marx, K. (1932[1845]). “Theses on Feuerbach”. The German Ideology. Edited by Pascal, R. New York: International Publishers. Viktor and Cukier
Mayer-Schönberger, V. & Cukier K. (2013). Big Data: A Revolution that Will Transform How We Live, Work, and Think. New York: Houghton Mifflin Harcourt.
Meng, X.L. (2018). “Statistical paradises and paradoxes in big data (i) law of large populations, big data paradox, and the 2016 us presidential election”.
The Annals of Applied Statistics. 12(2): 1-14.
https://doi.org/10.1016/j.ijforecast.2024.04.008.
Mohseni Ahooei, E. (2023). “The end of information age society 5.0 and the L [e] ast man”.
Journal of Cyberspace Studies. 7(1), 45-66. doi:
10.22059/JCSS.2022.346205.1078.
Moran, D. (2002). Introduction to Phenomenology. Routledge.
Narayanan, A. & Shmatikov, V. (2008). “Robust de-anonymization of large sparse datasets”. 2008 IEEE Symposium on Security and Privacy: 111-125. IEEE.
Nissenbaum, H. (2011). “Privacy in context: Technology, policy, and the integrity of social life”.
Journal of Information Policy. 1: 149-151.
https://doi.org/10.1145/3547299.
O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing Group.
Pearl, J. (2009). Causality. Cambridge University Press.
Pietsch, W. (2021). Big Data. Cambridge University Press.
Pond, P. (2020). Complexity, digital media and post truth politics: a theory of interactive systems. Springer Nature.
Porter, T.M. (2020). The Rise of Statistical Thinking, 1820–1900. Princeton University Press.
Raudenbush, S.W. & Bryk, A.S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. Vol. 1. Sage.
Resnyansky, L. (2019). “Conceptual frameworks for social and cultural Big Data analytics: Answering the epistemological challenge”.
Big Data & Society.
6(1): 1-12.
https://doi.org/10.1177/2053951718823815.
Shor, P.W. (1994). “Algorithms for quantum computation: Discrete logarithms and factoring”.
Proceedings of the 35th Annual Symposium on Foundations of Computer Science: 124-134. IEEE.
https://doi.org/10.1109/SFCS.1994.365700.
Smith, K.E. (2010). Meaning, Subjectivity, Society: Making Sense of Modernity. Leiden and Boston: Brill.
Sporns, O.; Bullmore, E. & Kaiser, M. (2008). “The human connectome: A structural description of the human brain”.
PLoS Biology. 6(7): 0245-0251. doi:
10.1371/journal.pcbi.0010042.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I. & Salakhutdinov, R. (2014). “Dropout: A simple way to prevent neural networks from overfitting”.
The Journal of Machine Learning Research. 15(1): 1929-1958. doi:
10.5555/2627435.2670313.
Taylor, C. (1986). Self-Interpreting Animals. In Martin Heidegger. Edited by Mulhall S. London: Routledge.
Tenenbaum, J.B.; Silva, V.D. & Langford, J.C. (2000). “A global geometric framework for nonlinear dimensionality reduction”.
Science. 290(5500): 2319-2323. doi:
10.1126/science.290.5500.2319.
Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”.
Journal of the Royal Statistical Society Series B: Statistical Methodology. 58(1): 267-288.
https://www.jstor.org/stable/2346178.
Turkle, S. (2011). Alone Together: Why We Expect More from Technology and Less from Each Other. Basic Books.
Tversky, A. & Kahneman, D. (1974). “Judgment under uncertainty: Heuristics and biases”.
Science. 185(4157): 1124-1131. doi:
10.1126/science.185.4157.1124.
Van Dijck, J. (2013). The Clture of Connectivity: A Critical History of Social Media. Oxford University Press.
Van Es, K. & Schäfer, M.T. (2017). The Datafied Society. Studying Culture through Data. Amsterdam University Press.
Vapnik, V. (2013). The Nature of Statistical Learning Theory. Springer Science & Business Media.
Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
Wellman, B. & Wortley, S. (1990). “Different strokes from different folks: Community ties and social support”.
American Journal of Sociology. 96(3): 558-588.
https://doi.org/10.1086/229572.
Yeo, G. (2021). Record-Making and Record-Keeping in Early Societies. Routledge.